home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE ZHPR2 ( UPLO, N, ALPHA, X, INCX, Y, INCY, AP )
- * .. Scalar Arguments ..
- COMPLEX*16 ALPHA
- INTEGER INCX, INCY, N
- CHARACTER*1 UPLO
- * .. Array Arguments ..
- COMPLEX*16 AP( * ), X( * ), Y( * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZHPR2 performs the hermitian rank 2 operation
- *
- * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
- *
- * where alpha is a scalar, x and y are n element vectors and A is an
- * n by n hermitian matrix, supplied in packed form.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the upper or lower
- * triangular part of the matrix A is supplied in the packed
- * array AP as follows:
- *
- * UPLO = 'U' or 'u' The upper triangular part of A is
- * supplied in AP.
- *
- * UPLO = 'L' or 'l' The lower triangular part of A is
- * supplied in AP.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - COMPLEX*16 .
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * X - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element vector x.
- * Unchanged on exit.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- * Y - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCY ) ).
- * Before entry, the incremented array Y must contain the n
- * element vector y.
- * Unchanged on exit.
- *
- * INCY - INTEGER.
- * On entry, INCY specifies the increment for the elements of
- * Y. INCY must not be zero.
- * Unchanged on exit.
- *
- * AP - COMPLEX*16 array of DIMENSION at least
- * ( ( n*( n + 1 ) )/2 ).
- * Before entry with UPLO = 'U' or 'u', the array AP must
- * contain the upper triangular part of the hermitian matrix
- * packed sequentially, column by column, so that AP( 1 )
- * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
- * and a( 2, 2 ) respectively, and so on. On exit, the array
- * AP is overwritten by the upper triangular part of the
- * updated matrix.
- * Before entry with UPLO = 'L' or 'l', the array AP must
- * contain the lower triangular part of the hermitian matrix
- * packed sequentially, column by column, so that AP( 1 )
- * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
- * and a( 3, 1 ) respectively, and so on. On exit, the array
- * AP is overwritten by the lower triangular part of the
- * updated matrix.
- * Note that the imaginary parts of the diagonal elements need
- * not be set, they are assumed to be zero, and on exit they
- * are set to zero.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * .. Local Scalars ..
- COMPLEX*16 TEMP1, TEMP2
- INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG, DBLE
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ) )THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 5
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 7
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'ZHPR2 ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
- $ RETURN
- *
- * Set up the start points in X and Y if the increments are not both
- * unity.
- *
- IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
- JX = KX
- JY = KY
- END IF
- *
- * Start the operations. In this version the elements of the array AP
- * are accessed sequentially with one pass through AP.
- *
- KK = 1
- IF( LSAME( UPLO, 'U' ) )THEN
- *
- * Form A when upper triangle is stored in AP.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 20, J = 1, N
- IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*DCONJG( Y( J ) )
- TEMP2 = DCONJG( ALPHA*X( J ) )
- K = KK
- DO 10, I = 1, J - 1
- AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2
- K = K + 1
- 10 CONTINUE
- AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) +
- $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
- ELSE
- AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
- END IF
- KK = KK + J
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*DCONJG( Y( JY ) )
- TEMP2 = DCONJG( ALPHA*X( JX ) )
- IX = KX
- IY = KY
- DO 30, K = KK, KK + J - 2
- AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2
- IX = IX + INCX
- IY = IY + INCY
- 30 CONTINUE
- AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) ) +
- $ DBLE( X( JX )*TEMP1 +
- $ Y( JY )*TEMP2 )
- ELSE
- AP( KK + J - 1 ) = DBLE( AP( KK + J - 1 ) )
- END IF
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 40 CONTINUE
- END IF
- ELSE
- *
- * Form A when lower triangle is stored in AP.
- *
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 60, J = 1, N
- IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*DCONJG( Y( J ) )
- TEMP2 = DCONJG( ALPHA*X( J ) )
- AP( KK ) = DBLE( AP( KK ) ) +
- $ DBLE( X( J )*TEMP1 + Y( J )*TEMP2 )
- K = KK + 1
- DO 50, I = J + 1, N
- AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2
- K = K + 1
- 50 CONTINUE
- ELSE
- AP( KK ) = DBLE( AP( KK ) )
- END IF
- KK = KK + N - J + 1
- 60 CONTINUE
- ELSE
- DO 80, J = 1, N
- IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*DCONJG( Y( JY ) )
- TEMP2 = DCONJG( ALPHA*X( JX ) )
- AP( KK ) = DBLE( AP( KK ) ) +
- $ DBLE( X( JX )*TEMP1 + Y( JY )*TEMP2 )
- IX = JX
- IY = JY
- DO 70, K = KK + 1, KK + N - J
- IX = IX + INCX
- IY = IY + INCY
- AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2
- 70 CONTINUE
- ELSE
- AP( KK ) = DBLE( AP( KK ) )
- END IF
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + N - J + 1
- 80 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZHPR2 .
- *
- END
-